.. not being used. Theyre the work of separation and analysis began. Marie performed the chemical separations, while Pierre did the measurements after each successive step. Physically it was heavy work for Marie.

She processed 20 kilos of raw material at a time. She had to clear away pine needles and debris, then she had to undertake the work of separation. In that shed they performed their experience and Marie writes that they spent the best times of their lives. Sometimes they could not do their processing outdoors, so the harmful gases had to be let out through the open windows. The only furniture was an old, worn pine table where Marie worked with her costly radium fractions.

We Will Write a Custom Essay Specifically
For You For Only $13.90/page!

order now

Since they did not have any shelter in which to store their precious products the latter were arranged on tables and boards. The dangerous gases contained, among other things, radon – the radioactive gas which is a matter of concern to us today since small amounts are emitted from certain kinds of building materials. Marie finally from several tons of the original material – isolated one decigram of almost pure radium chloride and had determined radium’s atomic weight as 225. She presented the findings of this work in her doctoral thesis on 25 June 1903. Later the two were to receive the Nobel Prize a few years later: Maries former teacher that they showed their work to expressed the opinion that the findings represented the greatest scientific contribution ever made in a doctoral thesis.

Pierre had been invited to the Royal Institution in London where Pierre gave a lecture. Before the crowded auditorium he showed how radium rapidly affected photographic plates wrapped in paper, how the substance gave off heat in the semi-darkness he demonstrated the spectacular light effect. He described the results that he got after trying them out on himself. He had wrapped a sample of radium salts in a thin rubber covering and bound it to his arm for ten hours, then had studied the wound, which resembled a burn, day by day. After 52 days a permanent gray scar remained.

Pierre mentioned that this observation maybe a treatment for cancer. Fifty years afterwards the presence of radioactivity was discovered on the premises and certain surfaces had to be cleaned. Pierre was ill. His legs shook and sometimes he found it hard to stand upright. He was in much pain.

He consulted a doctor who diagnosed neurasthenia and prescribed strychnine. And the skin on Marie’s fingers was cracked and scarred. Both of them constantly suffered from fatigue. Evidently they had no idea that the radiation could have a harmful effect on their general state of health. Nobel Prize In 1903 Marie and Pierre Curie were awarded half the Nobel Prize in Physics. The citation was, in recognition of the extraordinary services they have completed by their researches on the radiation phenomena discovered by Professor Henri Becquerel’.

Henri Becquerel was awarded the other half for his discovery of spontaneous radioactivity. The health of both Marie and Pierre Curie gave rise to concern. Their friends tried to make them work less. Their dearest wish was to have a new laboratory but no such laboratory was in prospect. They never got a new laboratory they always worked in empty room at schools.

On 19 April 1906 Pierre Curie was run over by a horse-drawn wagon near the Pont Neuf in Paris and was killed. Now Marie was left alone with two daughters, Irene aged 9 and Eve aged 2. She was in shock. When she was offered support, she refused it. She then became the first woman ever appointed to teach at the Sorbonne.

After some months, in November 1906, she gave her first lecture. The large amphitheater was packed. As well as students, her audience included people from far and near, journalists and photographers were in attendance. Many people had expected something unusual to occur. Perhaps some demonstration of the historic occasion.

When Marie entered, thin, pale and tense, she was met by an ovation. However the expectations of something other than a clear and factual lecture on physics were not fulfilled. But Marie’s personality, her aura of simplicity and competence made a great impression. Irene was now 9 years old. Marie had definite ideas about the upbringing and education of children that she now wanted to put into practice. Marie organized a private school with the parents themselves acting as teachers.

Professors accordingly taught a group of some ten children. The little group became a kind of school for the elite with a great emphasis on science. In 1908 Marie, as the first woman ever, was appointed to become a professor at the Sorbonne. Marie had opened up a completely new field of research: radioactivity. Various aspects of it were being studied all over the world In 1914, Marie was in the process of beginning to lead one of the departments in the Radium Institute established jointly by the University of Paris and the Pasteur Institute, After the Peace Treaty in 1918, her Radium Institute, which had been completed in 1914, could now be opened.

It became France’s most internationally celebrated research institute in the inter-war years. She had to devote a lot of time to fund-raising for her Institute because she could not afford the uranium. She also became deeply involved when she had become a member of the Commission for Intellectual Cooperation of the League of Nations and served as its vice-president for a time. There she met Missy Wiskell In the last ten years of her life Marie had the joy of seeing her daughter Irne and her son-in-law Frederic Joliet do successful research in the laboratory. She lived to see their discovery of artificial radioactivity, but not to hear that they had been awarded the Nobel Prize in Chemistry for it in 1935.

Marie Curie died of leukemia on 4 July 1934. Pierre and Marie Curies work is greatly respected in Physics and in Chemistry. Bibliography Bensuade-Vincent, Bernadette, Marie Curie, femme de science et de lgende, Reveu du Palais de la dcouverte, Vol. 16. n 157 avril 1988, 15-30. Crawford, Elisabeth, The Beginnings of the Nobel Institution, The Science Prizes 1901-1915, Cambridge University Press, Cambridge, & Edition de la Maison des Sciences, Paris, 1984.

Curie, Eve, Madame Curie, Gallimard, Paris, 1938. In English, Doubleday, New York. Curie, Marie, Pierre Curie and Autobiographical Notes, The Macmillan Company, New York, 1923. Subsequently Marie Curie refused to authorise publication of her Autobiographical Notes in any other country. Gleditsch, Ellen, Marie Sklodowska Curie (in Norwegian), Nordisk Tidskrift, rg. 35, 1959. Kandinsky, Wassily, Look Into the Past 1901-1913, The Blue Rider, Paul Klee.

Franz Marc, New York 1945. Langevin, Andr, Paul Langevin, mon pre, Les diteur Franais Runis, Paris, 1971. Marbo, Camille (Pseudonym for Marguerite Borel), Souvenirs et Rencontres, Grasset, Paris, 1968. McGrayne, Sharon Bertsch, Nobel Prize Women in Science, Their Lives, Struggles and Momentous Discoveries, A Birch Lane Press Book, Carol Publishing Group. Nobel Lectures including Presentation Speeches and Laureates’ Biographies, PHYSICS 1901-21. Published for the Nobel Foundation in 1967 by Elsevier Publishing Company, Amsterdam-London-New York.

Nobel Lectures including Presentation Speeches and Laureates’ Biographies, CHEMISTRY 1901-21. Published for the Nobel Foundation in 1967 by Elsevier Publishing Company, Amsterdam-London-New York. Pflaum, Rosalynd, Grand Obsession: Madame Curie and Her World, Doubleday, New York, 1989. Quinn, Susan, Marie Curie: A Life, Simon & Schuster, New York, 1995. Ramstedt, Eva, Marie Sklodowska Curie, Kosmos.

Papers on Physics (in Swedish) published by Svenska Fysikersamfundet, nr 12, 1934. Reid, Robert, Marie Curie, William Collins Sons & Co Ltd, London, 1974.


I'm Lydia!

Would you like to get a custom essay? How about receiving a customized one?

Check it out